ANDERSON BRIDGE

Object: To determine the self inductance of a coil by Anderson bridge.

Apparatus Used: Anderson bridge, connecting wires, Head phone.

Formula Used: The following formula is used for the determination of self inductance of coil.

$$\begin{split} L &= C \Bigg[RQ + rR \bigg\{ 1 + \frac{Q}{P} \bigg\} \Bigg] \\ \textbf{Since, } S &= \frac{Q}{P}R \; \; \textbf{; thus } \; L = C \Bigg[RQ + rR \bigg\{ 1 + \frac{S}{R} \bigg\} \Bigg] \\ \boxed{L &= C \Big[RQ + r \big\{ R + S \big\} \Big]} \\ \textbf{If } P &= Q \; \textbf{then } S &= R; \; \textbf{Hence, } \; L = C \Big[RQ + 2rR \Big] \\ \boxed{L &= RC \Big[Q + 2r \Big]} \end{split}$$

Where symbols have their usual meaning as shown in figure.

Circuit Diagram:

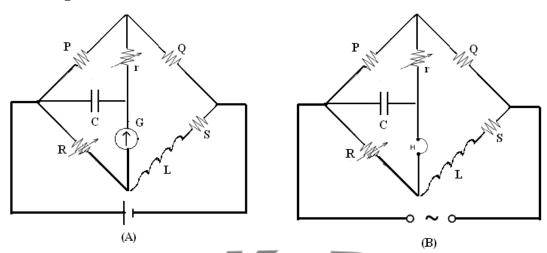


Fig (A): Bridge with DC source and galvanometer Fig (B): Bridge with AC source and Head Phone

Procedure:

- 1. Make connections as shown in fig A. i.e. connect source point with DC source, connect galvanometer at detector point and inductor at unknown point in your given kit.
- 2. Now vary R, keeping r equal to zero, so that deflection in galvanometer becomes zero. This is a DC balancing. Note this value of R.
- 3. Now, make connections as shown in fig B. i.e. replace DC source with AC source, replace galvanometer with Head phone.
- 4. Now vary r keeping the same value of R, so that no sound is heard in Headphone. This is known as AC balancing. Note the value of r.
- 5. Calculate the value of L using above formula and given value of C &Q for your circuit.
- 6. Repeat the Points 1 to 5 for the different inductors.
- 7. Repeat the Points 1 to 6 selecting different value of C.

Observation:

- 1. P=....Ω
- 2. $Q=\dots \Omega$
- 3. Table for value of R and r when $C=\dots \mu f$

Sr.No.	Inductor	$\mathbf{R}(\Omega)$	$\mathbf{r}\Omega)$	L(mH)
		for zero deflection in Galvanometer (G) under DC balancing	for no sound in Head phone (H) under AC balancing	(Inductance) $L = RC[Q + 2r]$
1.	First			L ₁ =
2.	Second			L ₂ =
3.	Third			$L_3 =$

4. Table for value of R and r when C=..... µf

Sr.No.	Inductor	$\mathbf{R}(\Omega)$	$\mathbf{r}(\Omega)$	L(mH)				
		for zero deflection	for no sound	(Inductance)				
		in Galvanometer (G)	in Head phone (H)	L = RC[Q + 2r]				
		under DC balancing	under AC balancing					
1.	First			L ₁ ' =				
2.	Second			L ₂ ' =				
3.	Third			L ₃ ' =				
Calculation: Show calculation for all value of inductance (L) Result:								
1. Inductance of 1st inductor = $\frac{L_1 + L_1}{L_1} = \dots = mH$								

- 1. Inductance of Ist inductor = $\frac{L_1 + L_1}{2} = \dots mH$
- 2. Inductance of IInd inductor = $\frac{L_2 + L_2}{2} = \dots mH$
- 3. Inductance of IIIrd inductor = $\frac{L_3 + L_3}{2}$ =mH

Precaution:

- 1. To avoid inductive effect short straight wires should be used.
- 2. Movement in galvanometer should be free.
- **3.** The resistances should be high and non-inductive.