## Network Theorems

## Dharmendra Kumar Pandey



Department of Physics,
P. P. N. (PG) College,

Kanpur - 208 001, U.P., India
Email: pandeydrdk@rediffmail.com,
dr.dkpandey@gmail.com
Website: dkpandey.weebly.com

## Components



## Active and Passive components

## Passive component:

The electrical component through which energy is dissipated are called as passive component. e.g. resistor, inductor, and capacitor
Active component:
The circuit component which generates energy is called as active component. e.g. dc or ac sources etc.

## Electrical Network

Electrical network/circuit:
The interconnection of electrical circuit components (resistors, capacitors, inductors and energy sources) which results a closed path is called as electrical network.
Active network:
An electrical circuit containing both the active and passive components is called as active network. Passive network:
An electrical circuit containing only passive components is called as passive network.

## Linear and non-linear Electrical Network

Linear network:
If current in electrical circuit is directly proportional to the source voltage then the network is termed as linear network. i.e. there is linear relationship between current and voltage for this network.
Non-linear network:
If current in electrical circuit is not directly proportional to the source voltage then the network is termed as non-linear network. i.e. there is non-linear relationship between current and voltage for this network.

## Four terminal electrical Network

Four terminal network: If an electrical network has two input and two output terminal then it is called as four terminal network. e.g. T-network or $Y$-network and $\pi$-network or $\nabla$-network.


Tor Ynetwork


## Conversion of $T \leftrightarrow \pi$ Network



## Example



$$
\mathrm{Z}_{\mathrm{A}}=\mathrm{Z}_{\mathrm{B}}=\mathrm{Z}_{\mathrm{C}}=\frac{2 \times 2+2 \times 2+2 \times 2}{2}=\frac{12}{2}=6 \Omega
$$



$$
Z_{X Y}=R_{X Y}=\frac{6 \times 3}{6+3}=\frac{18}{9}=2 \Omega \quad Z_{X B}=Z_{B Y}=\frac{6 \times 6}{6+6}=\frac{36}{12}=3 \Omega
$$

## Out put of same circuit by software



## Basic Law of electrical network

## Ohm's Law:

## $\mathrm{V}=\mathrm{i} \mathrm{R}$

Kirchoff's Current Law (KCL): The algebraic sum of currents at node in electrical network is equal to zero.

$$
\sum i=0 \Rightarrow \begin{aligned}
& \text { Incoming current }- \text {-Out going current }=0 \\
& \text { Incoming current }=\text { Out going current }
\end{aligned}
$$

Kirchoff's Vltage law (KVL): The algebraic sum of instantaneous voltage drop across the circuit elements for a closed loop is zero.

\[

\]

## Example for Basic Laws



## Example for Basic Laws



## Example for Basic Laws- Potential divider



## Example for Basic Laws - Current control



## Application of Kirchhoff's Law for two loop network

Applying KVL for loop I,
$\mathrm{Z}_{1} \mathrm{I}_{1}+\mathrm{Z}_{3}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=\mathrm{E}$
$\left(\mathrm{Z}_{1}+\mathrm{Z}_{3}\right) \mathrm{I}_{1}-\mathrm{Z}_{3} \mathrm{I}_{2}=\mathrm{E} \quad$ (1) $\boldsymbol{+}$
Applying KVL for loop II, $\sim$ E Loop I
$Z_{2} I_{2}-Z_{3}\left(I_{1}-I_{2}\right)=0$
$-Z_{3} I_{1}+\left(Z_{2}+Z_{3}\right) I_{2}=0$
Sofving equations (1) and (2),

$$
I_{1}=\frac{E\left(Z_{2}+Z_{3}\right)}{\left(Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}\right)}
$$

$$
I_{2}=\frac{Z_{3} E}{\left(Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}\right)}
$$

## Mesh analysis of two loop Network

Mesh equations for Loop I

$$
Z_{11} I_{1}+Z_{12} I_{2}=E_{1}
$$

Mesh equationsfor loop I

$$
Z_{21} I_{1}+Z_{22} I_{2}=E_{2}
$$



Here $E_{1}$ and $E_{2}$ are algebraic sum of e.m.f. of energy sources in mesh 1 and 2 respectively. $\mathbf{Z}_{11}$ and $\mathbf{Z}_{22}$ are called as loop impedance of mesh first and second respectively. $\mathbf{Z}_{12}$ and $\mathbf{Z}_{21}$ are called as mutual impedance of between meshes 1 and 2.

$$
I_{1}=\frac{\left[\begin{array}{ll}
E_{1} & Z_{12} \\
E_{2} & Z_{22}
\end{array}\right]}{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}
$$

$$
I_{2}=\frac{\left[\begin{array}{ll}
Z_{11} & E_{1} \\
Z_{21} & E_{2}
\end{array}\right]}{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}
$$

## Application of Mesh analysis for two loop Network

The mesh equation for mesh $I$ and mesh II can be written as,

$$
\begin{aligned}
& Z_{11} I_{1}+Z_{12} I_{2}=E_{1} \\
& Z_{21} I_{1}+Z_{22} I_{2}=E_{2}
\end{aligned}
$$

Here,


$$
\begin{array}{lll}
Z_{11}=Z_{1}+Z_{3} & Z_{12}=-Z_{3} & E_{1}=E \\
Z_{21}=-Z_{3} & Z_{22}=Z_{2}+Z_{3} & E_{2}=0
\end{array}
$$

So,

$$
I_{1}=\frac{\left[\begin{array}{ll}
E_{1} & Z_{12} \\
E_{2} & Z_{22}
\end{array}\right]}{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & z_{22}
\end{array}\right]}=\frac{\left[\begin{array}{cc}
E & -Z_{3} \\
0 & Z_{2}+Z_{3}
\end{array}\right]}{\left[\begin{array}{ll}
Z_{1}+Z_{3} & Z_{3} \\
-Z_{3} & Z_{2}+Z_{3}
\end{array}\right]} \square I_{1}=\frac{E\left(Z_{2}+Z_{3}\right)}{\left(Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}\right)}
$$

$$
I_{2}=\frac{\left[\begin{array}{ll}
Z_{11} & E_{1} \\
Z_{21} & E_{2}
\end{array}\right]}{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}=\frac{\left[\begin{array}{cc}
Z_{1}+Z_{3} & E \\
-Z_{3} & 0
\end{array}\right]}{\left[\begin{array}{cc}
Z_{1}+Z_{3} & -Z_{3} \\
-Z_{3} & Z_{2}+Z_{3}
\end{array}\right]} \longrightarrow I_{2}=\frac{Z_{3} E}{\left(Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}\right)}
$$

## Thevenin's Theorem

Statement: The theorem states that "Any two terminal linear network containing energy sources and impedances (active network) is equivalent to a voltage source of $E^{\prime}$ in combination with impedance $Z^{\prime}$ in series. Where $E^{\prime}$ is open circuited voltage across the terminals of network and $Z$ is the impedance of network when the sources are replaced by their internal impedances or short circuited.


## Thevenin's Theorem ........continued

If a load impedance $Z_{L}$ is connected to the terminal $A$ and $B$ of the network then load current $I_{L}$ can be written as,


## Proof of Thevenin's Theorem

The mesh equation for mesh $I$ and mesh II can be written as,

## $Z_{11} I_{1}+Z_{12} I_{2}=E_{1}$ $Z_{21} I_{1}+Z_{22} I_{2}=E_{2}$

Here,

$Z_{11}=Z_{1}+Z_{3} \quad Z_{12}=-Z_{3}$
$Z_{21}=-Z_{3} \quad Z_{22}=Z_{2}+Z_{3}+Z_{L} \quad E_{2}=0$

$$
\begin{aligned}
& \text { So, }\left[\begin{array}{ll}
Z_{11} & E_{1} \\
Z_{21} & E_{2}
\end{array}\right] \\
& I_{2}=\frac{\left[\begin{array}{cc}
Z_{1}+Z_{3} & E \\
-Z_{3} & 0
\end{array}\right]}{\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]}=\frac{0-\left(-Z_{3}\right) E}{\left[\begin{array}{cc}
Z_{1}+Z_{3} & -Z_{3} \\
-Z_{3} & Z_{2}+Z_{3}+Z_{L}
\end{array}\right]} I_{2}=I_{L}=\frac{0}{\left\{\left(Z_{1}+Z_{3}\right)\left(Z_{2}+Z_{3}+Z_{L}\right)\right.} \\
& I_{L}=\frac{Z_{3} E}{\left.\left\{\left(Z_{1}+Z_{3}\right) Z_{2}+Z_{1} Z_{3}+\left(Z_{1}+Z_{3}\right) Z_{\mathrm{L}}\right)\right\}} \Longrightarrow I_{L}=\frac{\frac{Z_{3}}{\left(Z_{1}+Z_{3}\right)} E}{\left.\left\{\left(Z_{2}+\frac{Z_{1} Z_{3}}{\left(Z_{1}+Z_{3}\right)}\right)+Z_{\mathrm{L}}\right)\right\}}
\end{aligned}
$$

## Find Load current using Thevenin's Theorem



## Solution using Thevenin's Theorem



## Norton's Theorem

Statement: The theorem states that "Any two terminal linear network containing energy sources and impedances (active network) is equivalent to a current source of $I^{\prime}$ in parallel combination with impedance $Z^{\prime}$. Where $I^{\prime}$ is short circuited current through terminals of network and $Z^{\prime}$ is the impedance of network when the sources are replaced by their internal impedances or short circuited.


## Norton's Theorem ..... continued

If a load impedance $Z_{L}$ is connected to the terminal $\mathcal{A}$ and $\mathcal{B}$ of the network then load current $\mathrm{I}_{\mathrm{L}}$ can be written as,


## Proof of Norton's Theorem

The mesh equation for mesh $I$ and mesh II can be written as,

## $Z_{11} I_{1}+Z_{12} I_{2}=E_{1}$ $Z_{21} I_{1}+Z_{22} I_{2}=E_{2}$

Here,


$$
\begin{array}{lll}
Z_{11}=Z_{1}+Z_{3} & Z_{12}=-Z_{3} & E_{1}=E \\
Z_{21}=-Z_{3} & Z_{22}=Z_{2}+Z_{3}+Z_{L} & E_{2}=0
\end{array}
$$

So,
$I_{2}=\frac{\left[\begin{array}{ll}Z_{11} & E_{1} \\ Z_{21} & E_{2}\end{array}\right]}{\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]}=\frac{\left[\begin{array}{cc}Z_{1}+Z_{3} & E \\ -Z_{3} & 0\end{array}\right]}{\left[\begin{array}{cc}Z_{1}+Z_{3} & -Z_{3} \\ -Z_{3} & Z_{2}+Z_{3}+Z_{L}\end{array}\right]} I_{2}=I_{L}=\frac{0-\left(-Z_{3}\right) E}{\left\{\left(Z_{1}+Z_{3}\right)\left(Z_{2}+Z_{3}+Z_{L}\right)-Z_{3}^{2}\right\}}$
$\Longrightarrow I_{L}=\frac{Z_{3} E}{\left\{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}+\left(Z_{1}+Z_{3}\right) Z_{L}\right\}} \Rightarrow I_{L}=\frac{Z_{3} E}{\left\{1+\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}} Z_{L}\right\}}$

## Proof of Norton's Theorem ....continued

If $I^{\prime}$ is short circuited current through terminals of network and $Z^{\prime}$ is the impedance of network when the sources are short circuited then,

$$
\begin{aligned}
& I^{\prime}=\frac{\left[\begin{array}{cc}
Z_{1}+Z_{3} & \mathrm{E} \\
-Z_{3} & 0
\end{array}\right]}{\left[\begin{array}{cc}
Z_{1}+Z_{3} & -Z_{3} \\
-Z_{3} & Z_{2}+Z_{3}
\end{array}\right]} \\
& I^{\prime}=\frac{Z_{3} E}{\left(Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}\right)}
\end{aligned}
$$

$Z^{\prime}=Z_{2}+\left(Z_{1} \| Z_{3}\right) \Rightarrow Z^{\prime}=Z_{2}+\frac{Z_{1} Z_{3}}{\left(Z_{1}+Z_{3}\right)}$

$$
Z^{\prime}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{1}+Z 3}
$$

Thus,

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{I}^{\prime}}{1+\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}^{\prime}}}
$$

$$
\Rightarrow
$$



$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{Z}^{\prime} \mathrm{I}^{\prime}}{\mathrm{Z}^{\prime}+\mathrm{Z}_{\mathrm{L}}}
$$

## Equivalence of Thevenin and $\mathcal{N}$ orton's Theorem

From Thevenin theorem, the load current can be written as,

$$
I_{L}=\frac{E^{\prime}}{Z^{\prime}+Z_{L}}
$$

If I' is shot circuited current through terminal of network, then

$$
\begin{gathered}
E^{\prime}=Z^{\prime} \prime^{\prime} \\
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{I}^{\prime} \mathrm{Z}^{\prime}}{\mathrm{Z}^{\prime}+\mathrm{Z}_{\mathrm{L}}}
\end{gathered}
$$



This is Nortons formula for Load current $I_{L}$. Therefore both the theorem are equivalent to each other.

## Find Load current using $\mathcal{N}$ orton's Theorem



## Solution using Joorton's Theorem



$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{Z}^{\prime} \mathrm{I}^{\prime}}{\mathrm{Z}^{\prime}+\mathrm{Z}_{\mathrm{L}}}
$$

## Superposition Theorem

Statement: The theorem states that "In any linear network containing impedances and energy sources (active linear network,, the current in any element or branch or mesh is equal to algebraic sum of currents that would separately flow in that by each source while other sources are replaced by their internal impedances".

$$
I=\sum I_{x} \quad ; \quad x=1,2, \ldots \ldots, \mathrm{n}
$$

$\mathcal{H e r e} n$ is number of energy sources in the network, If a two mesh active linear network has two energy sources and $I_{1} \& I_{2}$ are the currents in mesh1 and mesh 2 then,

$$
I_{1}=I_{1}^{\prime}+I_{1}^{\prime \prime} \quad I_{2}=I_{2}^{\prime}+I_{2}^{\prime \prime}
$$

Where $I_{1}{ }^{\prime}$ and $I_{2}{ }^{\prime}$ are currents in mesh1 and mesh 2 by first energy source while $I_{1}{ }^{\prime \prime}$ and $I_{2}{ }^{\prime \prime}$ are currents in mesh1 and mesh 2 by second energy source.

## Superposition Theorem

$\left(Z_{1}+Z_{3}\right) I_{1}+Z_{3} I_{2}=E_{1}$
$Z_{3} I_{1}+\left(Z_{2}+Z_{3}\right) I_{2}=E_{2}$
(1)


## $\left(I_{1}+Z_{3}\right) I_{1}+Z_{3} I_{2}=I_{1}$ $Z_{3} I_{1}+\left(Z_{2}+Z_{3}\right) Z_{2}=0$

## $\left(Z_{1}+Z_{3}\right) I_{2}+Z_{3} I_{2}^{2}=0$ $Z_{3} I_{1}{ }^{1}+\left(Z_{2}+Z_{3}\right) X_{2}=E_{2}$



After (2)+ (3), we get

| $\left(Z_{1}+Z_{3}\right)\left(I_{1}^{\prime}+I_{1}^{\prime \prime}\right)+Z_{3}\left(I_{2}^{\prime}+I_{2}^{\prime \prime}\right)=E_{1}$ |
| :--- | :--- |
| $Z_{3}\left(I_{1}^{\prime}+I_{1}^{\prime \prime}\right)+\left(Z_{2}+Z_{3}\right)\left(I_{2}^{\prime}+I_{2}^{\prime \prime}\right)=E_{2}$ | Comparing \(\quad \begin{aligned} \& \boldsymbol{I}_{\mathbf{1}}=\boldsymbol{I}_{1}^{\prime}+\boldsymbol{I}_{1}^{\prime \prime} <br>

\& \boldsymbol{I}_{\mathbf{2}}=\boldsymbol{I}_{\mathbf{2}}+\boldsymbol{I}_{2}^{\prime \prime}\end{aligned}\)

## Example of Superposition



## A Lot of Thanks

for kind attention

