Lecture 6,7\&8: AC Bridges

A.C. Bridges

$\mathcal{N o t e} \mathcal{A}$: $\mathcal{A l t e r n a t i n g ~ v o l t a g e : ~} \mathcal{A} n$ alternating voltage can be written as complex number. It is also known as phaser voltage.

$$
\boldsymbol{V}=V_{0} e^{j \omega t}
$$

$$
\boldsymbol{V}=V_{0}(\cos \omega t+j \sin \omega t)
$$

$$
\boldsymbol{V}=V_{0} \cos \omega t+j V_{0} \sin \omega t
$$

Real part $V=V_{0} \cos \omega t$
Img. part $V=V_{0} \sin \omega t$
$\mathcal{H e r e} V_{0}=$ maximum or peak value of voltage
$\theta=\omega t=$ phase of a.c. voltage
$\omega=$ angular frequency of a.c. voltage
$\mathcal{N o t e} \mathfrak{B}$: Alternating current: Similar to an alternating voltage, the alternating current can also be written as complex number. It is also Known as phaser current.

$$
\begin{aligned}
& \boldsymbol{I}=I_{0} e^{j \omega t} \\
& \boldsymbol{I}=I_{0}(\cos \omega t+j \sin \omega t) \\
& \boldsymbol{I}=I_{0} \cos \omega t+j I_{0} \sin \omega t
\end{aligned}
$$

Real part $I=I_{0} \cos \omega t$
Img. part $I=I_{0} \sin \omega t$
Here $I_{0}=$ maximum or peak value of current
Note C: Impedance: Impedance is an important parameter used to characterize electronic circuits, components, and the materials used to make components.
Impedance (Z) is generally defined as the total opposition a device or circuit offers to the flow of an alternating current at a given frequency. It is ratio of phaser voltage and phaser current. i.e.

$Z=V / I$

Let the phaser voltage leads the phaser current by an angle ϕ. Then the equation for voltage and current will $6 e$:

$$
\begin{gathered}
\boldsymbol{V}=V_{0} e^{j(\omega t+\phi)} \\
\boldsymbol{I}=I_{0} e^{j \omega t} \\
\text { Thus, } Z=\frac{V_{0} e^{j(\omega t+\phi)}}{I_{0} e^{j \omega t}}=\frac{V_{0}}{I_{0}} e^{j \phi} \\
Z=Z_{0} e^{j \phi}=Z_{0} \angle \phi: \text { In polar co-ordinates }
\end{gathered}
$$

$Z=Z_{0} \operatorname{Cos} \phi+j Z_{0} \sin \phi$
$Z=R+j X$
Thus impedance is represented as a complex quantity. $\mathcal{A} n$ impedance vector consists of a real part resistance, \mathcal{R} and an imaginary part (reactance) X as shown in the Figure.
$R=Z_{0} \cos \phi$
$X=Z_{0} \sin \phi$
Magnitude of $Z=\sqrt{R^{2}+X^{2}}$
Phase angle of $Z ; \phi=\tan ^{-1}(X / R)$
The reactances are of two ftypes:
Inductive reactance $X_{L}=\omega L=2 \pi f L$
Capacitive reactance $X_{C}=1 / \omega C=1 /(2 \pi f C)$
\mathcal{H} ere f and ω are the frequency and angular frequency of a.c. source. L is inductance, and C is capacitance.

Figure \mathcal{A}
The unit of impedance is the ofm (Ω). Impedance is a commonly used parameter and is especially useful for representing a series connection of resistance and reactance.
$\mathcal{N o t e}$ D: Admittance: Admittance is ratio of phaser current and voltage or is equal to reciprocal of impedance. i.e. $Y=1 / Z=\boldsymbol{I} / V$
If phaser voltage and current are:
$\boldsymbol{V}=V_{0} e^{j(\omega t+\phi)}, \boldsymbol{I}=I_{0} e^{j \omega t}$
Then, $Y=\frac{1}{Z}=\frac{I_{0} e^{j \omega t}}{V_{0} e^{j(\omega t+\phi)}}=\frac{I_{0}}{V_{0}} e^{-j \phi}$
$Y=Y_{0} e^{-j \phi}=Y_{0} \angle-\phi$
$Y=Y_{0} \operatorname{Cos}(-\phi)+j Y_{0} \sin (-\phi)$
$Y=1 / Z=G+j B$
\mathcal{H} ere \mathcal{G} is conductance, and \mathcal{B} is susceptance. The unit of admittance is the siemen (S).

Lecture 6,7\&8: AC Bridges

A.C. Bridges: AC bridges are similar to Wheatstone bridge in which D.C. source is replaced by an A.C. source and galvanometer with head phone/null detector. The resistors of bridge are replaced with combination of resistor, inductor and capacitors (i.e. impedances). These bridges are used to determine the unknown capacitance/inductance of capacitor/inductor. The working of these 6ridges is also 6ased on Ohm's and Kirchoff's law.

Circuit diagramme: It has four arms with impedances forming a bridge. The two opposite junctions are connected to a head phone while the other two are connected with an a.c. source (Fig.1). Principle and Balance condition: When the potential difference across \mathcal{B} and $(\mathcal{D}$ becomes zero. \mathcal{N} o current flows through $\mathcal{B D}$ arm. Thus no sound is heard in head phone. This situation is called as bridge balance situation. The bridge balance condition can be obtained using the Kirchoff's voltage and current Caw. Suppose that, total current flowing from source is I. The currents in the arms $\mathcal{A B}, \mathcal{B C}, \mathcal{A D}, \mathcal{D C}$ and $\mathfrak{B D}$ are $I_{1}, I_{2}, I_{3}, I_{4}$ and $I_{\mathcal{H}}$

Fig. 1 respectively.

Since under the balance condition the head phone current ($I_{\mathcal{H}}$) is zero. Thus,

$$
I_{1}=I_{2} \quad \text { and } \quad I_{3}=I_{4}
$$

Applying KVL for foop $\mathcal{A B D A}$, we have

$$
\begin{array}{ll}
& Z_{1} I_{1}-Z_{3} I_{3}=0 \\
\Rightarrow \quad & Z_{1} I_{1}=Z_{3} I_{3} \tag{1}
\end{array}
$$

And applying $\mathcal{K V L}$ for loop $\mathcal{B C D B}$, we have

$$
Z_{2} I_{2}-Z_{4} I_{4}=0
$$

$\Rightarrow \quad Z_{2} I_{1}-Z_{4} I_{3}=0$
$\Rightarrow \quad Z_{2} I_{1}=Z_{4} I_{3}$
Dividing eq.(1) with eq.(2) we have,
$\frac{Z_{1} I_{1}}{Z_{2} I_{1}}=\frac{Z_{3} I_{3}}{Z_{4} I_{3}}$
$\Rightarrow \quad \frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}$
Or $\frac{Z_{1}}{Z 3}=\frac{Z_{2}}{Z_{4}}$
Eq.(3) is the balance condition for a.c bridges. This indicates that when the ratio of impedances in two adjacent arms of bridge is equal to the ratio of impedances of other two adjacent arms, then the bridge is balanced.
Since impedance is combination of real and imaginary part. Thus the above balance condition can be divided in to two sub condition.

$$
\begin{align*}
& \text { Let, } \quad \begin{array}{l}
Z_{1}=R_{1}+j X_{1} ; Z_{2}=R_{2}+j X_{2} \\
Z_{3}=R_{3}+j X_{3} ; Z_{4}=R_{4}+j X_{4} \\
\text { Putting impedances in eq.(36) } \\
\quad \frac{R_{1}+j X_{1}}{R_{3}+j X_{3}}=\frac{R_{2}+j X_{2}}{R_{4}+j X_{4}} \\
\left(R_{1}+j X_{1}\right)\left(R_{4}+j X_{4}\right)=\left(R_{2}+j X_{2}\right)\left(R_{3}+j X_{3}\right) \\
R_{1} R_{4}-X_{1} X_{4}+j\left(R_{1} X_{4}+R_{1} X_{4}\right) \\
=R_{2} R_{3}-X_{2} X_{3}+j\left(R_{2} X_{3}+R_{3} X_{2}\right) \text { (4) } \\
\text { Comparing realterm of eq.(4) we have, } \\
R_{1} R_{4}-X_{1} X_{4}=R_{2} R_{3}-X_{2} X_{3} \\
\text { If } \quad X_{1} X_{4}=X_{2} X_{3}
\end{array} . \text { (5) }
\end{align*}
$$

Under the condition given by eq.(6), the eq.(5) becomes as,
$R_{1} R_{4}=R_{2} R_{3}$
$\frac{R_{1}}{R_{3}}=\frac{R_{2}}{R_{4}}$
Eq.(7) is the real part condition of the bridge balance condition.
Comparing imaginary terms of eq.(5), we have,

$$
\begin{equation*}
R_{1} X_{4}+R_{4} X_{1}=R_{2} X_{3}+R_{3} X_{2} \tag{8}
\end{equation*}
$$

Dividing eq.(8) by eq.(76), we get,
$\frac{R_{1} X_{4}+R_{4} X_{1}}{R_{1} R_{4}}=\frac{R_{2} X_{3}+R_{3} X_{2}}{R_{2} R_{3}}$
$\frac{X_{4}}{R_{4}}+\frac{X_{1}}{R_{1}}=\frac{X_{3}}{R_{3}}+\frac{X_{2}}{R_{2}}$
$\frac{X_{1}}{R_{1}}+\frac{X_{4}}{R_{4}}=\frac{X_{2}}{R_{2}}+\frac{X_{3}}{R_{3}}$
$\phi_{1}+\phi_{4}=\phi_{2}+\phi_{3}$
Here ϕ is phase angle. The eqs. (6), (7) and (9) suggests that a.c. bridge balance condition has two type of balance condition. i.e.(i) magnitude and (ii) phase angle balance condition.

Alternate proof of balance condition: AC bridge balance condition is obtained when,
$V_{B}=V_{D}$
If V is the source voltage then,
$\frac{Z_{1}}{Z_{1}+Z_{2}} V=\frac{Z_{3}}{Z_{3}+Z_{4}} V$
$\frac{Z_{1}}{Z_{1}+Z_{2}}=\frac{Z_{3}}{Z_{3}+Z_{4}}$
$\frac{Z_{1}+Z_{2}}{Z_{1}}=\frac{Z_{3}+Z_{4}}{Z_{3}}$
$\frac{Z_{2}}{Z_{1}}=\frac{Z_{4}}{Z_{3}}$ or $\frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}$
This is the ac bridge balance condition.
Since $Z=Z_{0} \angle \phi ; \mathrm{Z}_{0}=$ magnitude of Z
Thus, $Z_{1}=\left(Z_{0}\right)_{1} \angle \phi_{1}, Z_{2}=\left(Z_{0}\right)_{2} \angle \phi_{2}$

$$
Z_{3}=\left(Z_{0}\right)_{3} \angle \phi_{3}, Z_{4}=\left(Z_{0}\right)_{4} \angle \phi_{4}
$$

Putting values of impedances in eq.(1),
$\frac{\left(Z_{0}\right)_{1} \angle \phi_{1}}{\left(Z_{0}\right)_{2} \angle \phi_{2}}=\frac{\left(Z_{0}\right)_{3} \angle \phi_{3}}{\left(Z_{0}\right)_{1} \angle \phi_{4}}$
$\frac{\left(Z_{0}\right)_{1}}{\left(Z_{0}\right)_{2}} \angle\left(\phi_{1}-\phi_{2}\right)=\frac{\left(Z_{0}\right)_{3}}{\left(Z_{0}\right)_{1}} \angle\left(\phi_{3}-\phi_{4}\right)$
$\frac{\left(Z_{0}\right)_{1}}{\left(Z_{0}\right)_{2}} \angle\left(\phi_{1}+\phi_{4}\right)=\frac{\left(Z_{0}\right)_{3}}{\left(Z_{0}\right)_{1}} \angle\left(\phi_{2}+\phi_{3}\right)$
Separating the magnitude and phase angle in Eq.(2), we have
$\frac{\left(Z_{0}\right)_{1}}{\left(Z_{0}\right)_{2}}=\frac{\left(Z_{0}\right)_{3}}{\left(Z_{0}\right)_{1}}$
$\left(\phi_{1}+\phi_{4}\right)=\left(\phi_{2}+\phi_{3}\right)$
Eqs. (3a) and (36) suggests that a.c. bridge balance condition has two type of balance condition. i.e.(i) magnitude and (ii) phase angle balance condition.

Parameters measured from $\mathcal{A C}$ Bridges: The capacitance of capacitor, inductance of an inductor and frequency of ac source can be measured with $\mathcal{A C}$ bridge.
$\mathcal{A C}$ bridges for measurement of C
(1) De-sauty 6ridge
(2) Weins 6ridge (Series)
(3) Schering bridge
$\mathcal{A C}$ bridges for measurement of \mathcal{L}
(4) Anderson bridge
(5) Maxwell inductance bridge
(6) Maxwell L/C bridge or Maxwell-Weins bridge
(7) Hay bridge
(8) Owen's bridge
(9) Heavisible -Campbell equal ratio bridge

$\mathcal{A C}$ bridges for measurement of 'f

(10)Robinson bridge
(11)Weins briage (parallee)

Note: There are two types of Weins briage:
(a) Weins series 6ridge: It is used to determine the un反nown capacitance, its power factor.
(b) Weins parallel bridge: It is used in feedback network circuit of oscillator. It is used as frequency determining element in audio and high frequency oscillators. It is also used in harmonic distortion analyzer, where it is used as a notch filter for discriminating against one specific frequency. The circuit diagram and formula for frequency is given below.

Lecture 6,7\&8: AC Bridges

Wein's Bridges: It is an ac bridge. It is used to determine the unknown capacitance of a capacitor in terms of known capacitance of standard capacitor and is used to define the quality of capacitor by determination of its power factor.

The four arms of this encloses following components.
$\mathcal{A B}$ arm: Capacitor of un反nown capacitance C_{x} with a series internal resistance R_{1}
BC arm: Fixed resistance R_{2}
$\mathcal{A D}$ arm: Standard capacitor of known capacitance C_{0} with a series non-inductive variable resistance R_{3}
$\mathcal{D C}$ arm: Variable resistance R_{4}
The complete 6ridge circuit is shown in following figure (X).

Figure (X)
Working: The variable resistances R_{3} and R_{4} are varied at fixed value of R_{2}, till no sound is heard in head phone. At no sound, bridge becomes balanced.
$\operatorname{Let} \mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} are the impedances of the four arms of the bridge. Then,
$Z_{1}=R_{1}+\frac{1}{j \omega C_{X}} ; Z_{2}=R_{2}$
$Z_{3}=R_{3}+\frac{1}{j \omega C_{0}} ; Z_{4}=R_{4}$
Under the balance condition of bridge,
$\frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}$
Do not publish it. Copy righted material.

Putting values of impedances, we have
$\frac{R_{1}+\frac{1}{j \omega C_{X}}}{R_{2}}=\frac{R_{3}+\frac{1}{j \omega C_{0}}}{R_{4}}$
$\frac{R_{1}}{R_{2}}+\frac{1}{j \omega C_{X} R_{2}}=\frac{R_{3}}{R_{4}}+\frac{1}{j \omega C_{0} R_{4}}$
Comparing real part of eq.(2), we have
$\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$
Eq.(3) is the real part/dc balance condition of this bridge. By this, the series internal resistance of unknown capacitor can be determined.
And comparing imaginary part of eq.(2), we have
$\frac{1}{\omega C_{X} R_{2}}=\frac{1}{\omega C_{0} R_{4}}$
$C_{X} R_{2}=C_{0} R_{4}$
$C_{X}=C_{0} \frac{R_{4}}{R_{2}}$
The equation (4) is the formula for the determination of unknown capacitance. On the knowledge of R_{2} and R_{4} in balance condition, the unknown capacitance is calculated with eq.(4).
The power factor of unknown capacitor can be written as,
$\cos \phi=\frac{R_{1}}{Z}=\frac{R_{1}}{\sqrt{R_{1}^{2}+\left(1 / \omega C_{x}\right)^{2}}}$
If $R_{1}<\left(1 / \omega C_{x}\right)$ then,

$$
\begin{equation*}
\cos \phi=\omega C_{x} R_{1} \tag{5}
\end{equation*}
$$

By knowing the value of R_{1} and C_{X}, the power factor can be determined with eq.(5). If power factor is small then quality of capacitor is good otherwise not.
Advantage
This bridge is most suitable for comparing capacitances of capacitors.

Disadvantage

In this bridge, final balance condition is obtained by alternate variation in \mathbb{R}_{3} and \mathbb{R}_{3}. Thus both the balance conditions are dependent on each other. Thus sensitivity of bridge is low and is figh for equal value of \mathbb{R}_{2} and \mathbb{R}_{R}.

Lecture 6,7\&8: AC Bridges

Schering Bridges: This is an ac bridge which is used for the determination of the most accurate value of the unknown capacitance of a capacitor and is used to define the quality of capacitor by determination of its power factor. This bridge is also used in measurement of dielectric constants of liquids, testing of cables and insulators at high voltages.
The four arms of this encloses following components.
$\mathcal{A B}$ arm: Capacitor of un反nown capacitance C_{1} with a series internal resistance R_{1}
BC arm: Fixed resistance R_{2}
$\mathcal{A D}$ arm: Standard Capacitor of known capacitance C_{0}
$\mathcal{D C}$ arm: \mathcal{A} variable capacitor of capacitance C_{4} in parallel combination with Variable resistance R_{4}. The complete bridge circuit is shown in following figure (X).

Figure (Υ)
Working: The variable capacitor C_{4} and resistance R_{4} are varied at fixed value of R_{2}, till no sound is heard in head phone. At no sound, briage becomes 6alanced.
$\operatorname{Let} \mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} are the impedances of the four arms of the bridge. Then,
$Z_{1}=R_{1}+\frac{1}{j \omega C_{X}} ; Z_{2}=R_{2}$
$Z_{3}=\frac{1}{j \omega C_{0}} ; \frac{1}{Z_{4}}=\frac{1}{R_{4}}+j \omega C_{4}$
Under the balance condition of 6ridge,
$\frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}$
Putting values of impedances, we have
Do not publish it. Copy righted material.
$\frac{R_{1}+\frac{1}{j \omega C_{X}}}{R_{2}}=\frac{1}{j \omega C_{0}}\left(\frac{1}{R_{4}}+j \omega C_{4}\right)$
$\frac{R_{1}}{R_{2}}+\frac{1}{j \omega C_{X} R_{2}}=\frac{C_{4}}{C_{0}}+\frac{1}{j \omega C_{0} R_{4}}$
Comparing real part of eq.(2), we have
$\frac{R_{1}}{R_{2}}=\frac{C_{4}}{C_{0}}$
And comparing imaginary part of eq.(2), we have
$\frac{1}{\omega C_{X} R_{2}}=\frac{1}{\omega C_{0} R_{4}}$
$C_{X}=C_{0} \frac{R_{4}}{R_{2}}$
Eq.(3) is the first balance condition of this 6ridge. By this, the series internal resistance of unknown capacitor can be determined. This condition also indicates that the variation in C_{4} results this balance condition and is independent of R_{4}.

The equation (4) is second balance condition and provides formula for the determination of unknown capacitance. On the knowledge of R_{2} and R_{4} in balance condition, the unknown capacitance is calculated with eq.(4). This equation also suggests that this balance is obtained by variation in R_{4} and is independent of C_{4}.

Thus C_{4} and R_{4} are varied at fixed value of R_{2} for getting the balance condition.
The power factor of unknown capacitor can be written as,

$$
\begin{equation*}
\cos \phi=\frac{R_{1}}{Z}=\frac{R_{1}}{\sqrt{R_{1}^{2}+\left(1 / \omega C_{x}\right)^{2}}} \tag{5}
\end{equation*}
$$

Power factor of unknown capacitor can be determined with eq.(5) by knowing the value of R_{1} and C_{X}. Since the Both C_{4} and R_{4} are required for determination R_{1} and C_{X}, thus power factor require 6oth the variable quantity. If power factor is small then quality of capacitor is good otherwise not.
Advantage: This bridge provides Good/fine balance condition, most accurate result and is most sensitive. It is also useful in measurement of dielectric constants of fiquids and testing of cables and insulators at high voltage.

Lecture 6,7\&8: AC Bridges

Maxwell inductance bridges: It is the simplest ratio $\mathcal{A C}$ Bridge for the determination of unknown medium inductance of an inductor. This bridge is very simiFar to Weins series bridge.

The four arms of this bridge encloses following components.
$\mathcal{A B}$ arm: Inductor of unknown inductance L_{x} with a series internal resistance R_{1}
$\mathscr{B C}$ arm: Fixed resistance R_{2}
$\mathcal{A D}$ arm: Variable inductor of known inductance
L_{0} with its series internal resistance R_{3}
DC arm: Variable resistance R_{4}
The complete 6ridge circuit is shown in following figure (XX).

Figure (XX)
Working: The variable inductance L_{0} and resistance R_{4} are varied at fixed value of R_{2}, till no sound is heard in head phone. At no sound, bridge becomes balanced.
Let $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} are the impedances of the four arms of the bridge. Then,
$Z_{1}=R_{1}+j \omega L_{X} ; Z_{2}=R_{2}$
$Z_{3}=R_{3}+j \omega L_{0} ; Z_{4}=R_{4}$
Under the balance condition of bridge,
$\frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}$
Putting values of impedances, we have
$\frac{R_{1}+j \omega L_{X}}{R_{2}}=\frac{R_{3}+j \omega L_{0}}{R_{4}}$

Lecture 6,7\&8: AC Bridges

Maxwell L/C bridges: This is an AC briage which is also known as Maxwell-Wein bridge. It is modified Maxwell's inductance briage. By this bridge unknown inductance of an inductor is measured in terms of capacitance.

The four arms of this bridge encloses following components.
$\mathcal{A B}$ arm: \mathcal{A} variable capacitor of capacitance C_{1} in parallel combination of resistance R_{1}
BC arm: Fixed resistance R_{2}
$\mathcal{A D}$ arm: Fixed resistance R_{3}
DC arm: An inductor of unknown inductance L_{X} in series of variable resistance R_{4}
The complete bridge circuit is shown in following figure ($y \mathrm{y}$).

Working: The variable inductance C_{1} and resistance R_{4} are varied at fixed value of R_{1}, R_{2} and R_{3}, till no sound or minimum sound is heard in head phone. At this situation, Gridge becomes balanced.
Let $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} are the impedances of the four arms of the bridge. Then,
$\frac{1}{Z_{1}}=\frac{1}{R_{1}}+j \omega C_{1} ; Z_{2}=R_{2}$
$Z_{3}=R_{3} \quad ; Z_{4}=R_{4}+j \omega L_{X}$
${ }^{U}$ nder the balance condition of bridge,
$\frac{Z_{1}}{Z_{2}}=\frac{Z_{3}}{Z_{4}}$
$\frac{Z_{2}}{Z_{1}}=\frac{Z_{4}}{Z_{3}}$
Putting values of impedances, we have
$R_{2}\left(\frac{1}{R_{1}}+j \omega C_{1}\right)=\frac{R_{4}+j \omega L_{X}}{R_{3}}$
$\frac{R_{2}}{R_{1}}+j \omega C_{1} R_{2}=\frac{R_{4}}{R_{3}}+j \omega \frac{L_{X}}{R_{3}}$
Comparing real part of eq. (2), we have
$\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}$
$\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$
Eq.(3) is the real part/dc balance condition of this bridge. Thus variation in R_{4} provides dc balance condition.
And comparing imaginary part of eq.(2), we have
$C_{1} R_{2}=\frac{L_{X}}{R_{3}}$
$L_{X}=C_{1} R_{2} R_{3}$
The equation (4) is the formula for the determination of unknown inductance. On the knowledge of C_{1}, R_{2} and R_{3} in balance condition, the un反nown inductance is calculated.

Advantage

Both the balance conditions are independent to each other. Initially, R_{4} is varied then C_{1} is varied to obtain final balance condition. Thus process of getting the Galance condition is easy. In view of getting the balance condition, this bridge is better than the Maxwell's inductance 6ridge.

Disadvantage

The perfect balance can never be obtained in this bridge due to stray capacitance (self capacitance of coil) and presence of harmonics in ac source.

