Lecture 2: Current in RC circuit

Charging of Capacitor through Resister

Let us consider a capacitor of capacitance C is connected to a DC source of e.m.f. E through a resister of resistance R and a key \mathcal{K} in series. When the key \mathcal{K} is switched on, the charging process of capacitor starts. The charge on capacitor increases with time and attains its maximum in certain duration of time. As the time passes, potential difference across the plates of capacitor increases due to increase of charge. This potential difference opposes the source for charging. As a result flow of charge reduces. Hence in the process of charging of capacitor, initially the maximum current flows through circuit and it decreases with time.
According to KVL, the algebraic sum of instantaneous voltage drop across the circuit elements for a closed loop is zero. Thus, for the present $\mathbb{R L}$ circuit, $E-V_{1}-V_{2}=0$
$E=V_{1}+V_{2}$
If at any instant the current in circuit is I and charge stored on capacitor is q then the potential drop across resister and capacitor will be RI and q / C respectively.
Using eq.(1), we can write,
$E=R I+\frac{q}{C} \quad \Rightarrow R I=E-\frac{q}{C}$

Fig 1

$$
\begin{align*}
& \log _{e}(C E-q)-\log _{e}(C E)=-\frac{1}{R C} t \tag{1}\\
& \log _{e} \frac{(C E-q)}{(C E)}=-\frac{t}{R C} \\
& \frac{C E-q}{C E}=e^{-\frac{t}{R C}} \\
& 1-\frac{q}{C E}=e^{-\frac{t}{R C}}
\end{align*}
$$

$$
\begin{equation*}
\frac{d q}{C E-q}=\frac{1}{R C} d t \tag{2}
\end{equation*}
$$

Integrating eq.(2)
$\int \frac{d q}{C E-q}=\frac{1}{R C} \int d t+C^{\prime}$
$-\log _{e}(C E-q)=\frac{1}{R C} t+C^{\prime}$
Here C^{\prime} is integration constant and is determined by initial condition.
i.e. when $t=0, q=0$ then from eq.(3) we have $-\log _{e}(C E)=C^{\prime}$
From eqs.(3) and (4), we can write,
$-\log _{e}(C E-q)=\frac{1}{R C} t-\log _{e}(C E)$
$\log _{e}(C E-q)=-\frac{1}{R C} t+\log _{e}(C E)$

Fig. 2

Lecture 2: Current in RC circuit

Since, the steady state charge or maximum charge $\left(q_{0}\right)=C E$
And dimension of $R C=$ dimension of time;
Say, $R C=\tau=$ capacitive time constant
Hence eq.(4) 6ecomes as,
$q=q_{0}\left(1-e^{-t / \tau}\right)$
Eqs. (5) and (6) are called as expression of charge on capacitor at instant t. These expressions indicates that-
(1) Initially the charge on capacitor is zero.
(2) It increases exponentially following expression $\left(1-e^{-t / \tau}\right)$.
(3) After infinite time, it reaches to its steady state value (q_{0}).
If V is potential difference across the plates of capacitor at instant t then from eq.(6)
$C V=C E\left(1-e^{-t / \tau}\right)$
$V=E\left(1-e^{-t / \tau}\right)=V_{0}\left(1-e^{-t / \tau}\right)$
Eq. (7) shows that the nature of potential difference across the plates of capacitor is similar to that of charge stored in capacitor.
Differentiating eq.(6),
$\frac{d q}{d t}=\frac{q_{0}}{\tau} e^{-t / \tau}$
$\frac{d q}{d t}=\frac{C E}{R C} e^{-t / \tau}$
$\frac{d q}{d t}=\frac{E}{R} e^{-t / \tau}$
$I=I_{0} e^{-t / \tau}$
Eq. (8) is calfed as expression of current in the process of charging of capacitor. This expression indicates that-
(1) Initially, the current through circuit is maximum $\left(I_{0}\right)$.
(2) It decreases exponentially following expression $\left(e^{-t / \tau}\right)$.
(3) After infinite time, it reaches to zero.

Fig. 3

Capacitive Time constant

A. We know that

$$
q=q_{0}\left(1-e^{-t / \tau}\right)
$$

When $t=\tau$ then from eq. (6), we can write
$q=q_{0}\left(1-e^{-1}\right)$
$q=q_{0}\left(1-\frac{1}{e}\right)$
$q=q_{0}\left(1-\frac{1}{2.718}\right)$
$q=q_{0}(1-0.368)$
$q=0.632 q_{0}$
$q=0.632 q_{0}=63.2 \% q_{0}$
Thus the time constant for the RC circuit is the time in which the current increases up to 63.2% of maximum current.
B. We know that

$$
I=I_{0} e^{-t / \tau}
$$

When $t=\tau$ then from eq. (6), we can write
$I=I_{0} e^{-1}=I_{0} \frac{1}{e}=I_{0} \frac{1}{2.718}=0.368 I_{0}$
$I=0.368 I_{0}=36.8 \% I_{0}$
Thus the time constant for the RC circuit is the time in which the current decays from its maximum value to 36.8% of maximum current.

Lecture 2: Current in RC circuit

Discharging of capacitor through resister

Let us consider a charged capacitor of capacitance C is connected to a resister of resistance R through a key \mathcal{K} in series. When the key \mathcal{K} is switched on, the capacitor discharges through resister. The charge on capacitor started to decrease due to loss of capacitive energy through resister.

According to KVL, the algebraic sum of instantaneous voltage drop across the circuit elements for a closed loop is zero.
Thus $E-V_{1}-V_{2}=0$

$$
\begin{equation*}
E=V_{1}+V_{2} \tag{1}
\end{equation*}
$$

Here $E=0$, Thus $V_{1}+V_{2}=0$
If the current in circuit at time t is I and charge stored on capacitor is q then the potential drop across resister and capacitor will be RI and q / C respectively.
Using eq.(1)

$$
\begin{aligned}
& R I+\frac{q}{C}=0 \\
\Rightarrow & R I=-\frac{q}{C} \\
\Rightarrow & \frac{d q}{d t}=-\frac{q}{R C} \\
\Rightarrow & \frac{d q}{q}=-\frac{1}{R C} d t
\end{aligned}
$$

Integrating eq.(1)
$\int \frac{d q}{q}=-\frac{1}{R C} \int d t+C^{\prime}$
$\log _{e} q=-\frac{t}{R C}+C^{\prime}$
Here C^{\prime} is integration constant and is determined by initial condition.
i.e. when $t=0, q=q_{0}$ then from eq.(3) we have $\log _{e} q_{0}=C^{\prime}$
From eqs. (3) and (4), we can write,

$$
\log _{e} q=-\frac{t}{R C}+\log _{e} q_{0}
$$

$\log _{e} \frac{q}{q_{0}}=-\frac{t}{R C} \quad \Rightarrow \frac{q}{q_{0}}=e^{-t / R C}$
$q=q_{0} e^{-t / R C}$

Lecture 2: Current in RC circuit

Differentiating eq.(6)

$$
\begin{align*}
& \frac{d q}{d t}=-\frac{q_{0}}{\tau} e^{-t / \tau}=-\frac{C E}{R C} e^{-t / \tau} \\
& \frac{d q}{d t}=-\frac{E}{R} e^{-t / \tau} \\
& I=-I_{0} e^{-t / \tau} \tag{8}
\end{align*}
$$

Eq. (8) is called as expression of current in the process of discharging of capacitor. This expression indicates that-
(1) Initially, the maximum current flows through circuit in opposite direction of charging case.
(2) It decreases exponentially following expression $\left(e^{-t / \tau}\right)$.
(3) After infinite time, it approaches to zero.

Fig. 3

Capacitive Time Constant

In case of discharging of capacitor, the charge on capacitor at instant is given by following expression.
$q=q_{0} e^{-t / R C}$
When $t=\tau$ then from above eq., we can write
$q=q_{0} e^{-1}=q_{0} \frac{1}{e}=q_{0} \frac{1}{2.718}=0.368 q_{0}$

$$
q=0.368 q_{0}=36.8 \% q_{0}
$$

Thus the time constant for the RC circuit is the time in which the charge on capacitor decays from steady state value to 36.8% of its maximum.

High resistance by leakage of capacitor
The figh resistance can be measured with the discharging process of capacitor.
Principle: In the case of discharging of capacitor, the charge ' q ' on capacitor at any instant t is given $6 y$,
$q=q_{0} e^{-t / R C}$
$\frac{q}{q_{0}}=e^{-t / R C}$
$\frac{q_{0}}{q}=e^{t / R C}$
Taking log on both side
$\log _{e} \frac{q_{0}}{q}=\frac{t}{R C}$
$R=\frac{t}{C \log _{e} \frac{q_{0}}{q}}$
$R=\frac{t}{2.3026 C \log _{10} \frac{q_{0}}{q}}$
Using eq.(1), the value of R can determined on the knowtedge of discharging time (t), capacitance (C) and q_{0} / q.
Method for determination of q_{0} / q :
For the determination0 of q_{0} / q following circuit is designed (Fig.1.

Fig. 1

1. First of all K_{1} key is pressed for few minutes, so that capacitor is charged up to maximum value q_{0}. ${ }^{\text {Now }} K_{I}$ is released and

Lecture 2: Current in RC circuit

\mathcal{K}_{2} is pressed. At this stage, the capacitor discharges through galvanometer which provides a deflection θ_{0} corresponding to charge on capacitor q_{0}.
2. Now K_{1} is again pressed after releasing K_{2} so that capacitor is fully recharged. After it K3 is pressed for known time t. By this, charged capacitor discharges through resister. As a result, the instantaneous charge on it becomes q. This rest charge on capacitor is allowed to discharge with galvanometer by pressing key K_{2}. In this process, the gafvanometer gives a deflection θ.
Since $q \propto \theta$
Thus, $q=k \theta$
Similary, $q_{0}=k \theta_{0}$
Here 反is a constant
From eqs.(2) and (3), we have,
$\frac{q_{0}}{q}=\frac{\theta_{0}}{\theta}$
Substituting value from eq.(4) to eq.(1),
$R=\frac{t}{2.3026 C \log _{10} \frac{\theta_{0}}{\theta}}$

By the process (2), a series of t and q are obtained. A graph is then pfotted $\log _{10}(\theta 0 / \theta)$ verses t which comes a straight line (Fig.2). The slope of this line provides the mean value of $t / \log _{10}(\theta 0 / \theta)$. Knowing the value of C, the value of R is calculated with of eq.(5).

Fig. 2
\mathcal{N} ote \mathcal{A} : The small resistance is not be measured by this method because of low time constant for it. Due to low time constant, the capacitor discharges in very soon time. Thus, experimental measurement is not possible for this case.
\mathcal{N} ote B:
Unit of RC $=$ ohm \times farad

$$
\begin{aligned}
& =\frac{\text { volt }}{a m p} \times \frac{\text { coulomb }}{\text { volt }} \\
& =\frac{\text { volt }}{a m p} \times \frac{a m p \times \mathrm{sec}}{\text { volt }} \\
& =\text { sec }
\end{aligned}
$$

Dimension of τ for RC circuit $=$ dimension of time
Example 1: A capacitor is charged to a certain potential through a resistance of $30 \mathcal{M} \Omega$. If it reaches $3 / 4$ of its final potential in 0.5 sec then calculate the capacitance.
Sofution: Given that,
$R=3 \mathcal{M} \Omega, V=3 V_{0} / 4$ and $t=0.5 \mathrm{sec}, C=$?
We know that
$V=V_{0}\left(1-e^{-t / R C}\right)$
$\frac{3 V_{0}}{4}=V_{0}\left(1-e^{-t / R C}\right)$
$\frac{3}{4}=1-e^{-t / R C}$
$e^{-t / R C}=1-\frac{3}{4}$
$e^{-t / R C}=\frac{1}{4}$
$e^{t / R C}=4 \quad \Rightarrow \frac{t}{R C}=\log _{e} 4$
$C=\frac{t}{R \log _{e} 4}=\frac{t}{2.3026 R \log _{10} 4}$
$C=\frac{t}{2 \times 2.3026 R \log _{10} 2}$
$C=\frac{0.5}{2 \times 2.3026 \times 3 \times 10^{6} \times 0.3010}$
$C=\frac{0.5}{4.1585} \times 10^{-6}=0.1202 \times 10^{-6} \mathrm{~F}$
$C=0.12 \mu \mathrm{~F}$

Lecture 2: Current in RC circuit

Example 2: \mathcal{A} capacitor of capacitance $0.5 \mu F$ is discharged through a resister. If half remains on capacitor in 3.47 sec then find the resistance?
Solution: Given that, $C=0.5 \mu \mathrm{~F}, t=3.45 \mathrm{sec}$, $q=q_{0} / 2, R=$?
$R=\frac{t}{2.3026 C \log _{10} \frac{q_{0}}{q}}$
$R=\frac{3.47}{2.3026 \times 0.5 \times 10^{-6} \times \log _{10} 2}$
$R=\frac{3.47}{2.3026 \times 0.5 \times 10^{-6} \times 0.3010}$
$R=\frac{3.47}{0.3465} \times 10^{6}$
$R=\frac{3.47}{0.347} \times 10^{6}=10 \times 10^{6} \Omega$
$R=10 M \Omega$
Example 3: \mathcal{A} capacitor of capacitance $4 \mu F$ is charging with source of 12 volts through a resister $1 \mathcal{M} \Omega$. Find out the instantaneous charge, voltage and current after time 4sec?
Solution: Given that, $C=4 \mu F, \mathcal{E}=12 v o l t s$, $R=1 \mathcal{M} \Omega$
$q=$?, $V=$? and $i=$?
$\tau=R C=4 \times 10^{-6} \times 1 \times 10^{6}=4 \mathrm{sec}$
(i) $q=q_{0}\left(1-e^{-t / \tau}\right)$
$q=C E\left(1-e^{-t / \tau}\right)$
$q=4 \times 10^{-6} \times 12 \times\left(1-e^{-4 / 4}\right)$
$q=48 \times 10^{-6} \times\left(1-e^{-1}\right)$
$q=48 \times 10^{-6} \times\left(1-\frac{1}{e}\right)$
$q=48 \times 10^{-6} \times\left(1-\frac{1}{2.718}\right)$
$q=48 \times 10^{-6} \times(1-0.368)$
$q=48 \times 10^{-6} \times 0.632$
$q=30.34 \times 10^{-6} \mathrm{C}$
$q=30.34 \mu \mathrm{C}$
(ii) $V=q / C=\frac{30.34 \times 10^{-6}}{4 \times 10^{-6}}=7.585$ volt
(iii) $I=I_{0} e^{-t / R C}=\frac{q_{0}}{\tau} e^{-t / \tau}$

$$
I=\frac{30.34 \times 10^{-6}}{1} e^{-1}=\frac{30.34 \times 10^{-6}}{e}
$$

$$
I=\frac{30.34 \times 10^{-6}}{2.718}=11.163 \times 10^{-6} \mathrm{amp}
$$

$$
I=11.1639 \mu \mathrm{~A}
$$

Example4 \mathcal{A} capacitor of capacitance $5 \mu F$ is discharged through a resister of resistance $10 \mathcal{M} \Omega$. Find the time in which charge on capacitor reduces to 36.8% of its maximum value.
Solution: Given that, $R=10 \mathcal{M} \Omega, C=5 \mu F$,
If $q=36.8 \% q_{0}$, $t=$?
We know that when $q=36.8 \% q_{0}, t=\tau$
$t=\tau=R C=10 \times 10^{6} \times 5 \times 10^{-6}$
$t=50 \mathrm{sec}$
Example5 When a charged capacitor of capacitance $1 \mu F$ is connected through a gafvanometer then it gives a deflection of 15 cm . But it provides 10 cm deflection when it discharged initially through a resister for 10 sec . Find the value of resistance.
Solution: Given that, $C=1 \mu F, \quad t=10 \mathrm{sec}$,
$\theta_{0}=20 \mathrm{~cm}, \theta=15 \mathrm{~cm}, R=$?

$$
\begin{aligned}
& R=\frac{t}{2.3026 C \log _{10} \frac{\theta_{0}}{\theta}} \\
& R=\frac{10}{2.3026 \times 1 \times 10^{-6} \times \log _{10}(15 / 10)} \\
& R=\frac{10 \times 10^{6}}{2.3026 \times \log _{10}(3 / 2)} \\
& R=\frac{10 \times 10^{6}}{2.3026 \times\left(\log _{10} 3-\log _{10} 2\right)} \\
& R=\frac{10 \times 10^{6}}{2.3026 \times(0.4771-0.3010)} \\
& R=\frac{10 \times 10^{6}}{2.3026 \times 0.1761}=\frac{10 \times 10^{6}}{0.4055} \\
& R=24.66 M \Omega
\end{aligned}
$$

