LCR-Circuits

Object: To determine the impedance of LCR circuit.

Apparatus Used: resistance, inductor coil, capacitor, connecting wires, a.c. voltmeter, miliammeter, low voltage a.c. source.

Formula Used: The following formula is used for the determination of impedance of LCR circuit.

$$Z = \sqrt{R^2 + \left(X_L \sim X_C\right)^2}$$

Where, Z : impedance of LCR circuit, X_i : Inductive reactance,

 X_{C} : Capacitive reactance

R : resistance

$$R = \frac{dV_R}{dI_R}$$
, $X_L = \frac{dV_R}{dI_L}$ and $X_C = \frac{dV_C}{dI_C}$

 V_R , V_L and V_C are the voltage across R, L and C respectively.

 I_R , I_L and I_C are the currents through R, L and C respectively.

Circuit Diagram:

Procedure:

- 1. Note: In the given apparatus the ac. source, voltmeter and mili-ammeter are internally connected. The two points 1 and 2 are given for rest connections. So connect resistor or inductor or capacitor or series of all with points 1 and 2 to complete the circuit.
- 2. Initially make the circuit as shown in Figure 1. Now vary the voltage across R with help of given knob in apparatus, and note the corresponding current. This will provide you the values of V_R and I_R . Plot the graph in V_R and I_R . the slope of this graph will give the value of R.
- 3. Now make the circuit as shown in Figure 2. Now vary the voltage across L with help of given knob in apparatus, and note the corresponding current. This will provide you the values of V_L and I_L . Plot the graph in V_L and I_L . The slope of this graph will give the value of X_L .

- 4. Similarly, make the circuit as shown in Figure 3. Now vary the voltage across C with help of given knob in apparatus, and note the corresponding current. This will provide you the values of V_C and I_C . Plot the graph in V_C and I_C . The slope of this graph will give the value of X_C .
- 5. After it, make the circuit as shown in Figure 4. Now vary the voltage across combination of R, L and C with help of given knob in apparatus, and note the corresponding current. This will provide you the values of V and I. Plot the graph in V and I. The slope of this graph will give the value of Z.
- 6. Further more calculate the value of z with the help of R, X_L and X_C . This value should be equal or approximately equal to the value of z obtained with graph.

Observation:

- 1. Least count of voltmeter= volts
- 2. Least count of mili-ammeter= mA

3.	Table for value of voltage and current	

Sr.No.	R-Circuit		L-Circuit		C-Circuit		LCR-Circuit	
	V _R	I _R	VL	IL	V _C	I _C	V	Ι
	(volt)	(mA)	(volt)	(mA)	(volt)	(mA)	(volt)	(mA)
1.								
2.								
3.								
4.								
5.								
6.								

Calculation:

1. R=

- (1) Show the evaluation of R, X_L , X_C and Z with graph.
- (2) Show the calculation of Z with the evaluated values of R, X_L , and X_C .

Result:

-Ω 2. $X_{L}=$ Ω.....Ω
- 3. $X_{C}=$Ω
- 4. $Z_{graph} = \ldots \Omega$
- 5. $Z_{calculated}$ =..... Ω

Precaution:

- 1. Connections should be tight.
- 2. Variation in voltage should be in slow manner.
- 3. Reading of voltage and current should be started with zero.

Pande,