Acceleration due to gravity ' g ' by Kater's Pendulum

Object: |To determine the value of acceleration due to gravity with Kater's pendulum.
Apparatus used: Kater's pendulum, a stop watch and a meter rod.
Formula: The following formula is used for the determination of acceleration due to gravity ' g ':

$$
\begin{equation*}
g=\frac{8 \pi^{2}}{\frac{T_{1}^{2}+T_{2}^{2}}{l_{1}+l_{2}}+\frac{T_{1}^{2}-T_{2}^{2}}{l_{1}-l_{2}}} \tag{1}
\end{equation*}
$$

Here, T_{1} : time periods of the oscillating pendulum from knife-edge K1
T_{2} : time periods of the oscillating pendulum from knife-edge K2
l_{1} : distances between knife-edges K1 and CG of the pendulum
l_{2} : distances between knife-edges K 2 and CG of the pendulum
When T_{1} and T_{2} are very close to each other (difference less than 1 percent), the above expression becomes as:

$$
\begin{equation*}
g=\frac{8 \pi^{2}}{\frac{T_{1}^{2}+T_{2}^{2}}{l_{1}+l_{2}}} \tag{2}
\end{equation*}
$$

Procedure:

1. Fix the weights as shown in figure. i.e.
\{one end $\rightarrow \mathrm{M} \rightarrow \mathrm{K}_{1} \rightarrow \mathrm{~m} \rightarrow \mathrm{~W} \rightarrow \mathrm{~K}_{2} \rightarrow \mathrm{~W} \rightarrow$ other end)
2. Make sure that the distances from big masses to ends and big masses to knife edges should be symmetrical.
3. Balance the pendulum on a sharp wedge such that the smaller weights are at symmetrical distant from CG. Now mark the position of its centre of gravity and measure the distance of the knife-edges K_{1} and $\mathrm{K}_{2} \mathrm{CG}$. This will give you value of l_{1} and l_{2}.
4. Suspend the pendulum with the knife-edge K_{1} and set it to oscillate with small amplitude. Note the times for 15,20 and 25 oscillations respectively.
5. Now suspend the pendulum with the knife-edge K_{2} and set it to oscillate with small amplitude. Note the times for 15,20 and 25 oscillations respectively.
6. The oscillations should be seen with the help of a telescope for accuracy.

Figure

Observation:

1. Least count of stop watch= \qquad .sec
2. Distance between K_{1} and $C G\left(l_{1}\right)=$ \qquad .cm
3. Distance between K_{2} and $\mathrm{CG}\left(l_{2}\right)=$. \qquad .cm
4. Table for time period T_{1} (oscillation about K_{1}):

Sr.	Number of	Time of	Time	Mean
No.	Oscillation n	Oscillation $t_{1}(\mathrm{sec})$	Period $T_{1}=t_{1} / n$	T_{1} (sec)
1.	15			
2.	20			
3.	25			

5. Table for time period T_{2} (oscillation about K_{2}):

Sr.	Number of	Time of	Time	Mean
No.	Oscillation n	Oscillation $T_{2}(\mathrm{sec})$	Period $T_{2}=t_{2} / n$	T_{2} (sec)
1.	15			
2.	20			
3.	25			

Calculation: Using equation (1) or (2) \{depending on value of T_{1} and T_{2} \} calculate the value of g .

Result: Acceleration due to gravity ' g '= \qquad $\mathrm{m} / \mathrm{s}^{2}$
Standard value of ' g ' = \qquad $\mathrm{m} / \mathrm{s}^{2}$

Percentage error: $\frac{\Delta g}{g} \times 100=\frac{g_{\text {stan dard }}-g_{\text {measured }}}{g} \times 100 .=$ \qquad $\%$

Precautions:

1. The two knife-edges should be parallel to each other.
2. The amplitude of vibration should be small so that the motion of the pendulum satisfies the condition of simple harmonic motion.
3. To avoid any irregularity of motion the time period should be noted after the pendulum has made a few oscillation.
4. To avoid friction there should be glass surface on rigid support.
