Acceleration due to gravity 'g' by Kater's Pendulum

Object: |To determine the value of acceleration due to gravity with Kater's pendulum.

Apparatus used: Kater's pendulum, a stop watch and a meter rod.

Formula: The following formula is used for the determination of acceleration due to gravity 'g':

$$g = \frac{8\pi^2}{\frac{T_1^2 + T_2^2}{l_1 + l_2} + \frac{T_1^2 - T_2^2}{l_1 - l_2}}$$

Here, T_1 : time periods of the oscillating pendulum from knife-edge K1

T₂: time periods of the oscillating pendulum from knife-edge K2

- l_1 : distances between knife-edges K1 and CG of the pendulum
- l_2 : distances between knife-edges K2 and CG of the pendulum

When T_1 and T_2 are very close to each other (difference less than 1 percent), the above expression becomes as:

$$g = \frac{8\pi^2}{\frac{T_1^2 + T_2^2}{l_1 + l_2}}$$

Procedure:

1. Fix the weights as shown in figure. i.e.

{one end $\rightarrow M \rightarrow K_1 \rightarrow m \rightarrow w \rightarrow K_2 \rightarrow W \rightarrow other end}$

2. Make sure that the distances from big masses to ends and big masses to knife edges should be symmetrical.

3. Balance the pendulum on a sharp wedge such that the smaller weights are at symmetrical distant from CG. Now mark the position of its centre of gravity and measure the distance of the knife-edges K_1 and K_2 CG. This will give you value of l_1 and l_2 .

4. Suspend the pendulum with the knife-edge K_1 and set it to oscillate with small amplitude. Note the times for 15, 20 and 25 oscillations respectively.

5. Now suspend the pendulum with the knife-edge K_2 and set it to oscillate with small amplitude. Note the times for 15, 20 and 25 oscillations respectively.

6. The oscillations should be seen with the help of a telescope for accuracy.

(1)

(2)

Figure

Observation:

- 1. Least count of stop watch=.....sec
- 2. Distance between K_1 and $CG(l_1)$ =.....cm
- 3. Distance between K_2 and $CG(l_2)=....cm$
- 4. Table for time period T_1 (oscillation about K_1):

Sr.	Number of	Time of	Time	Mean	
No.	Oscillation	Oscillation	Period	T_{l}	
	n	$t_1(sec)$	$T_1 = t_1/n$	(sec)	
1.	15				
2.	20				
3.	25				

5. Table for time period $T_2($ oscillation about $K_2)$:

Sr.	Number of	Time of	Time	Mean
No.	Oscillation	Oscillation	Period	T_2
	п	$T_2(sec)$	$T_2 = t_2/n$	(sec)
1.	15			
2.	20			
3.	25			

Calculation: Using equation (1) or (2) {depending on value of T_1 and T_2 } calculate the value of g.

Result: Acceleration due to gravity 'g'=.....m/s² Standard value of 'g' =m/s²

Percentage error:
$$\frac{\Delta g}{g} \times 100 = \frac{g_{s \tan dard} - g_{measured}}{g} \times 100 = \dots \%$$

Precautions:

- 1. The two knife-edges should be parallel to each other.
- 2. The amplitude of vibration should be small so that the motion of the pendulum satisfies the condition of simple harmonic motion.
- 3. To avoid any irregularity of motion the time period should be noted after the pendulum has made a few oscillation.
- 4. To avoid friction there should be glass surface on rigid support.