## Internal resistance by potentiometer

**Object:** To determine the internal resistance of Leclanche cell using potentiometer.

**Apparatus Used:** H.T. battery, potentiometer, galvanometer, Leclanche cell, resistance box, rheostat, keys, connecting wires.

**Formula Used:** The following formula is used for the determination internal resistance of Leclanche cell .

$$r = \left(\frac{l_1}{l_2} - 1\right)R$$

 $l_1$ =balancing length of potentiometer wire when Leclanche cell is open circuited with resistance box.  $l_2$ =balancing length of potentiometer wire when Leclanche cell is closed circuited with resistance box. R=Resistance applied in resistance box when Leclanche cell is closed circuited.

## **Circuit Diagram:**



**Proof:** Suppose k is the potential gradient of the potentiometer wire (k=B/l: B: e.m.f. of H.T. battery, *l* is total length of potentiometer wire). If  $l_1$  is the balancing length of potentiometer wire when Leclanche cell is open circuited with resistance box (i.e when K<sub>1</sub> key is pressed and K<sub>2</sub> key is open) then e.m.f. of Leclanche cell is equal to potential difference across  $l_1$  length of wire. Hence,

$$E=k l_1 \tag{1}$$

If r is resistance in resistance box and  $l_2$  is balancing length of potentiometer wire when both keys K1 and K2 are pressed (i.e. Leclanche cell is closed circuited with resistance box) then potential difference (V) across R is equal to potential difference across  $l_2$  length of wire. So,

$$V=k l_2$$
(2)

From equations (1) and (2) we have,

$$E/V = l_1/l_2 \tag{3}$$

Let 'r' is internal resistance Leclanche cell. If 'i' is the current in closed circuited Leclanche cell and resistance box then from Ohm's law

$$E = i (R + r) = i R + i r = V + i r$$
$$E - V = i r$$

$$r = \frac{E - V}{i} = \frac{V}{i} \left(\frac{E}{V} - 1\right) = \frac{iR}{i} \left(\frac{E}{V} - 1\right) = R \left(\frac{E}{V} - 1\right)$$
(4)

From equations (3) and (4) we have,

$$r = \left(\frac{l_1}{l_2} - 1\right)R\tag{5}$$

Equation (5) is final expression of internal resistance in terms of  $l_1$ ,  $l_2$  and R.

## **Procedure:**

- 1. Make connections as shown in circuit diagram. (if H.T. battery has low current supply then there is no need to connect rheostat).
- 2. Press the key  $K_1$  and place the jaukey 'J' at X and Y points. If deflection in galvanometer go in opposite sides then connection is correct. If deflection goes out side of the scale of galvanometer then control it with rheostat.
- 3. By pressing key  $K_1$ , find the exact position on potentiometer wire at which the deflection in galvanometer is zero. Measure the distance of this point from X. This provides the length  $l_1$ .
- 4. Now, place a value of resistance in resistance box and press the both keys  $K_1$  and  $K_2$ . After it, find the exact position on potentiometer wire at which the deflection in galvanometer is zero. Measure the distance of this point from X. This provides the length  $l_2$ .
- 5. Calculate the value of internal resistance with the given formula.
- 6. Repeat the process 3 to 5 for the five set of readings.

| Observation:<br>Table for value of $l_1$ and $l_2$ |       |                      |       |      |  |
|----------------------------------------------------|-------|----------------------|-------|------|--|
| Sr.No.                                             | $l_1$ | $\mathbf{R}(\Omega)$ | $l_2$ | r(Ω) |  |
| 1.                                                 |       |                      |       |      |  |
| 2.                                                 |       |                      |       |      |  |
| 3.                                                 |       |                      |       |      |  |
| 4.                                                 |       |                      |       |      |  |
| 5.                                                 |       |                      |       |      |  |

Calculation: Show all calculations for internal resistance (r) and take its mean.

**Result:** internal resistance of Leclanche cell=  $\dots (\Omega)$ 

## **Precaution:**

- **1.** Connections should not be loose.
- 2. In resistance box the keys should be very tight.
- 3. The positive terminal of both battery and cell should be connected at same point.
- 4. Avoid pressing keys for large time otherwise cell will be discharged.