Conversion of Galvanometer to Voltmeter

Object: To convert Weston galvanometer to a voltmeter of voltage range 0 to V volts.

Apparatus Used: battery, resistance box, galvanometer, voltmeter, rheostat, keys, connecting wires.

Formula Used: For the conversion of galvanometer to voltmeter $(G \rightarrow V)$ a high resistance 'R' is connected in series of galvanometer. The value of R is determined by following expression.

$$R = \frac{V}{I_g} - G$$

Here, V= maximum value of voltage range

G= galvanometer resistance

 I_g =current for full scale deflection in galvanometer

$$I_g = C_s N$$

N= total number of divisions in galvanometer

 C_s =Current sensitivity of galvanometer or figure of merit

$$C_s = \frac{E}{n\left(R' + G\right)}$$

E= e.m.f. battery or cell

R' = resistance involved in galvanometer circuit (in determination of determination C_s / I_g)

n= deflection (number of division) in galvanometer on introducing the resistance R' in galvanometer circuit.

Circuit Diagram:

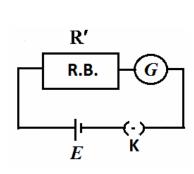


Figure (1)

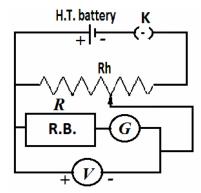


Figure (2)

Procedure:

- 1. Measure the e.m.f. of given cell/battery (E). Read the value of G written in galvanometer and total number of division (N) in galvanometer.
- 2. Make connections as shown in Figure (1).
- 3. Now close the key K . Note the value of deflection in galvanometer (n) with varying the resistance in resistance box (R').
- 4. Calculate the value of C_s for all set of R' and n using E and G. Now determine I_g with expression $I_g = C_s$ N and find the mean value of it.

- 5. See in galvanometer, a value of current is written in it, this is I_g . If your calculated I_g is approximately same with this value then observation up to this point is correct. If it is not true then repeat/check the process $3\rightarrow 4$.
- 6. After it, calculate the value of R with the formula $R = \frac{V}{I_g} G$. Now make the circuit shown in

Figure 2 and introduce the calculated resistance R in resistance box.

- 7. Now vary the deflection in galvanometer from $2\rightarrow 30$ divisions in interval of 2 with help of rheostat and note the corresponding voltmeter readings (V).
- 8. If V is maximum voltage of given voltage range then voltage equal to one division on galvanometer is V/N. Using it convert galvanometer deflections in volt (V').
- 9. Now calculate the difference of V and V'. If value of V and V'are approximately same or their difference is too much small then the conversion of $G \rightarrow V$ is correct.

Observation:

- 1. E=volt
- 2. G=Ω
- 3. N=.....
- 4. Table for I_g

Sr.No.	$R'(\Omega)$	n	C_{s}	$I_g(A)$	mean I_g (in A or μ A)
1.	5000				5
2.	6000				
3.	7000				
4.	8000				
5.	9000				
6.	10000				

5. Calibration of shunted galvanometer

Sr.No.	Galvanomet	er reading	Voltmeter reading	Error V'-V
	In division	In volt (V')	V (in volt)	(in volts)

Calculation: Show all calculations of C_s , I_g and R.

Result: The resistance required to convert the given galvanometer in to voltmeter of range of volts is(Ω).

Precaution:

Precautions:

- 1. Resistance in determination of figure of merit should be of high value.
- 2. Exact high resistance should be connected in series to galvanometer for conversion to voltmeter.
- 3. Voltmeter should be connected using sign convention.
- 4. Voltmeter used in calibration of shunted galvanometer should be of nearly same range.
- 5. In calibration process the readings should be noted from zero.