Conversion of Galvanometer to Ammeter

Object: To convert Weston galvanometer to a ammeter of current range 0 to A amp.

Apparatus Used: battery, resistance box, galvanometer, ammeter, voltmeter, rheostat, keys, connecting wires.

Formula Used: For the conversion of galvanometer to ammeter $(G \rightarrow A)$ a low resistance (shunt resistance) 'S' is connected parallel to galvanometer. The value of S is determined by following expression.

$$S = \frac{I_g}{I - I_g} G$$

Here, I= maximum value of current range

G= galvanometer resistance

 I_{g} =current for full scale deflection in galvanometer

$$I_{o} = C_{s} N$$

N= total number of divisions in galvanometer

 C_s =Current sensitivity of galvanometer or figure of merit

$$C_s = \frac{E}{n\left(\mathbf{R'} + \mathbf{G}\right)}$$

E= e.m.f. battery or cell

R' = resistance involved in galvanometer circuit (in determination of determination C_s / I_g) n= deflection (number of division) in galvanometer on introducing the resistance R' in galvanometer circuit.

Since S is too much small so we use wire for the application of low resistance. Let ρ is specific resistance of wire material. If resistance of *l* length of wire is equal to resistance S then, resistance of wire = specific resistance x length / area of cross - section

$$S = \rho \frac{l}{A} = \rho \frac{l}{\pi r^2}$$
$$l = \frac{\pi r^2}{\rho} S$$

Here r is radius of wire. For copper value of ρ is 1.78x10⁻⁶ ohm-cm.

Circuit Diagram:

Procedure:

- Measure the e.m.f. of given cell/battery (E). Read the value of G written in galvanometer and total number of division (N) in galvanometer.
- 2. Make connections as shown in Figure (1).
- 3. Now close the key K. Note the value of deflection in galvanometer (n) with varying the resistance in resistance box (R').
- 4. Calculate the value of C_s for all set of R' and n using E and G. Now determine I_g with expression $I_g = C_s$ N and find the mean value of it.
- 5. See in galvanometer, a value of current is written this is I_g . If your calculated I_g is approximately same with this value then observation up to this point is correct. If it is not true then repeat/check the process $3 \rightarrow 4$.
- 6. After it, calculate the value of S with the formula given in formula used. Further determine the length of copper wire equivalent to resistance S, by measuring the radius of wire
- 7. Now make the circuit diagram as shown in figure (2). Vary the deflection in galvanometer from $2 \rightarrow 30$ divisions in interval of 2 with help of rheostat and note the corresponding ammeter readings (I).
- 8. If A is maximum current of given current range then current equal to one division on galvanometer is A/N. Using it convert galvanometer deflections in current (I').
- 9. Now calculate the difference of I and I'. If value of I and I' are approximately same or their difference is too much small then the conversion of $G \rightarrow A$ is correct. D. K. Pandev

Observation:

- 1. E=volt
- 2. $G = \dots \Omega$

Sr.No.	$R'(\Omega)$	n	C_s	$I_{g}(\mathbf{A})$	mean I_g (in A or μ A)	
1.	5000					
2.	6000					
3.	7000					
4.	8000					
5.	9000					
6.	10000					

5. Calibration of shunted galvanometer

Sr.No.	Galvanomete	er reading	ammeter reading	Error (I'-I)
	In division	In amp (I')	I (in amp)	(in amp)

Calculation: Show all calculations of C_s , I_g and S.

Result: The length of shunt wire required to convert the given galvanometer in to ammeter of range of amp iscm.

Precautions:

- 1. Resistance in determination of figure of merit should be of high value.
- 2. Exact length of wire should be connected parallel to galvanometer.
- 3. Ammeter should be connected using sign convention.
- 4. Ammeter used in calibration of shunted galvanometer should be of nearly same range.
- 5. In calibration process the readings should be noted from zero.