'G' by P. O. Box

Object: To determine the galvanometer resistance with Post office Box.

Apparatus Used: P. O. Box, cell, rheostat, galvanometer, connecting wires.

Formula Used: The following formula is used for the determination of galvanometer resistance.

$$G = \frac{Q}{P}R$$

Here, G: galvanometer resistance (CD arm resistance of P. O. Box)

P: AB arm resistance of P. O. Box

Q: BC arm resistance of P. O. Box

R: AD arm resistance of P. O. Box

Circuit Diagram:

- 2. Now give a resistance in AB and BC arm (resistance P and Q) of the P. O. Box.
- 3. After it, press key K₁. You will get a deflection in galvanometer (see figure 1). If it is out of scale then control it with rheostat.
- Now give a resistance in AD arm and press first key K₁ then key K₂. You will observe that galvanometer give a deflection at first and then it reduces (goes left) or increases (goes right) (see figure 2a and 2b).
- 5. Now change the value of resistance in AD arm such that there is no change in deflection even pressing key K_2 after the K_1 (see figure 3). The amount of resistance in AD arm gives the value of R.
- 6. Repeat the Points 2 to 5 for the different set of P and Q values.
- 7. Calculate the value of G with each set of P,Q and R.

Observation:

1. Table for the value of P, Q and R resistances

Sr.	Ρ(Ω)	Q(Ω)	Deflection in	R (Ω)	$G(\Omega)$	
No.			Galvanometer with R	(at no change in deflection of		
				galvanometer)		
Ex.	10	10	R=59Ω, left deflection	60	60	
			R=60 Ω , no change in deflection			
			R=61 Ω , right deflection			
1.	100	100				
2.	1000	1000				
			nK	Par		
3.	100	10				
		100				
4.	1000	100				

Calculation: Show calculation for all value of G and their mean value.

Result: Galvanometer resistance= $\dots \Omega$

Precaution:

- 1. Connections should not be loose.
- **2.** Key K_2 should be always pressed after pressing key K_1 .
- **3.** If there is found a range of no deflection then total range should be noted and mean of them should be taken for R at no deflection.
- 4. In P.O. Box the keys should be very tight.
- 5. Avoid pressing keys for large time otherwise cell will be discharged.