
Moment of inertia of a Flywheel

OBJECT: To determine the moment of inertia of a flywheel about its own axis of rotation.Apparatus used: Flywheel, a few masses, a strong and thin string, stop watch, vernier callipers.Formula used: The moment of inertia of a flywheel is given by following formula:

t = time of oscillation up to flywheel stopped after detaching the mass.

Procedure:

- 1. Measure the diameter of the axle with vernier calipers at different points and find the mean.
- 2. Attach the mass with string.
- 3. Wrap the string or thread axle of flywheel for allotted number of turns (n_1 =4 or 6 or 8).
- 4. Allow to fall the mass.
- 5. After fall of the mass, note the number of oscillation of flywheel (n_2) and corresponding time (t_2) till the flywheel stopped.
- 6. Repeat procedure from 2-5 at fixed n_1 for different masses (e.g. m=100, 150, 200, 250, 300gm)
- 7. Draw the graphs between mass (m) and $(1+\frac{n_2}{n_1})$ and between n_2 and t^2 . The graph should be

separate for each n_1 .

Observation:

A. For radius of axle

Least count of vernier callipers = $\frac{value \ of \ one \ division \ on \ main \ scale}{Number \ of \ division \ on \ vernier \ scale} = \dots \dots cm$

Transer of arriston on remained							
Sr. No.	Main scale reading	Vernier scale reading	Total				
1							
2							
3							
4							
5							

Diameter of axle (D=Mean of Total =

Radius of axle (r=D/2) =

B. For n₂ and t

~	n ₁	m	n ₂	t	$1 + \frac{n_2}{n_1}$	t^2
1						
2						
3						
4						
5						

Calculation:

The moment of inertia can be calculated with following formula:

$$I = \frac{g r}{4 \pi} K C = \frac{g r}{4 \pi} \frac{\tan \theta_2}{\tan \theta_1}$$

Least count error: $\frac{\Delta I}{I} = \left\{\frac{\Delta r}{r} + 2\frac{\Delta t}{t}\right\} \implies \frac{\Delta I}{I} \times 100 = \left\{\frac{\Delta r}{r} + 2\frac{\Delta t}{t}\right\} \times 100$

Result:

Precautions:

- 1. There should be least friction in flywheel.
- 2. The length of string should be less than the height of axle from floor.
- 3. There should be no kink in string.
- 4. The string should be thin and should be wound evenly.
- 5. The stop watch should be started just after detaching the loaded string.