Characteristic of FET

Object: To study the output or Drain and transfer characteristic of field effect transistor.

Apparatus used: N channel J-FET (BF W-10), variable DC source of range 0-3 volt and 0-15volts, voltmeter of range 0-3 and 0-15volt, mili-ammeter, wires/leads.

Theory:

- (1) Output / drain characteristic: The variation of drain current (I_D) with drain-source voltage (V_{DS}) at constant gate source voltage (V_{GS}) provides the drain characteristic. For V_{GS} off, the value of V_{DS} at which the drain current becomes constant gives pinch off voltage.
- (2) Transfer characteristic: The variation of drain current (I_D) with gate-source voltage V_{GS} at constant drain-source voltage V_{DS}. The value of V_{GS} at which I_D becomes zero called as pinch off voltage.

Circuit Diagram:

064	urvation :-	teast cour	nt of gate	to source I	k H AN A	
		teast cours	nt of drai	in to source i	lottage = 0.2.	sV
Qu	tbut charac	lorictics :-			H	
S.N.	145-00	-	Vys = -1V 1° Vys = -1.5V			
	Vas (V)	ID(mA)	Vps(V)	ID(MA)	Vos(V)	Lo(mA)
k.	0	c	0	0	0	
2.	0.5	3	0.5	2	6.5	1.95
3.	1.0	5.5	1.0	3.56	1.0	9.75
ц.	1.5	7	1.5	475	1.5	350
5.	9.0	8.75	2.0	550	20	4.25
6.	2.5	9.75	2.5	6.00	2.5	4.50
7.	3.0	10.50	3.0	6.25	3.0	4.75
8.	3.5	10.75	3.5	6.50	3. 5	5.6
9.	4.0	10.75	4.0 .	6.75	4.0	5.0
10,	4.5	10:75	4.5	675	4.5	5.0
<u> </u> ,	5.0		5.0	6.75	5.0	5.0
12.	5.5	1-70	5.5	6.75	5.5	5.0
13.	6.0	10.1>	6.0	6.75	60	5.0
14.	65	10· p	6.5	675	65	5.0
15,	7.0	I IND	7.0	[/	7.0	5.0 V

SIN	Vqs(Valt)	Ip(mA)		
1.	0	HEA IN JC		
2.	0.2	10.25		
3.	0.4	9.25		
4.	0.6	8.50		
5.	0.8	7.50		
6.	1.0	6.75		
7.	1.2	5.75		
8.	1.4	5.25		
9.	1.6	<u>4.75</u>		
10.	1-8	4.00		
11.	2.0	3.25		
12.	2.2	2.50		
13.	2.4	2.00		
14.	2.6	1.50		
AND DESCRIPTION	the second se	11.00		

Drain Characteristics

Transfer Characteristics

Result: The following results can be written on the basis of characteristic curve.

- (A) Output or drain characteristic curve shows that drain current I_D at constant V_{GS} increases initially with drain-source voltage V_{DS} and after that it becomes constant. At V_{GS} =0volt, drain current saturates at 3.5 volt value of V_{DS} . Hence this characteristic curve provides that V_P =3.5volts.
- (*B*) The transfer characteristic indicates that the drain current I_D decreases with the gate-source voltage V_{GS} at constant V_{DS} . The current becomes zero at 3.4 volts. This is called as pinch off voltage.

Precautions:

- 1. The connection should be tight otherwise fluctuation in voltage and current will happen.
- 2. At the turning point of curve, more reading should be taken.
- 3. For the accuracy, current should be taken both in mA and μ A..
- 4. The reading should be in multiple of least count.