DE-SAUTY BRIDGE

Object: To determine the capacitance of capacitor by De-Sauty bridge.

Apparatus Used: De-Sauty bridge, connecting wire, Head phone.

Formula Used: The following formula is used for the determination of self inductance of coil.

$$\mathbf{C}_{\mathrm{x}} = \frac{\mathbf{R}_{\mathrm{1}}}{\mathbf{R}_{\mathrm{2}}}\mathbf{C}_{\mathrm{0}} = \frac{\mathbf{P}}{\mathbf{Q}}\mathbf{C}_{\mathrm{0}}$$

Where, Cx: capacitance of unknown capacitor; C_0 : capacitance of unknown capacitor; R_1 =P: and R_2 =Q: resistances

Circuit Diagram:

- 2. Now put a fix value of resistance in arm BC (resistance P).
- 3. After it, listen the sound in Headphone varying the resistance in arm CD (resistance Q). You will receive a varying sound. Note the value of Q for which no sound is heard in head phone.
- 4. Repeat the point 3 for different fix values of P.
- 5. Repeat the points 1 to 4 selecting different capacitors.

Observation:

1. $C_0 = \dots \mu f$

2. Table for value of P and Q for Ist capacitor

Sr. No.	Ρ (Ω)	Perception of sound with Q	$\mathbf{Q}(\Omega)$ (At no sound)	$\mathbf{C}(\mu f)$ $C_{x} = \frac{P}{Q}C_{0}$	Mean C(µf)
Ex.	100	90-sound 100-no sound 110-sound	100	$Cx = \frac{100}{100} C_0$	
1.					
2.					
3.					
4.					

3. Table for value of P and Q for IInd capacitor

Sr.	$\mathbf{P}(\Omega)$	Perception of	Q (Ω)	C(µf)	Mean C(µf)
No.		sound with Q	(At no sound)	$C_x = \frac{P}{Q}C_0$	
1.					
2.					
3.					
4.					

4. Table for value of P and Q for IIIrd capacitor

Sr. No.	Ρ (Ω)	Perception of sound with Q	$\mathbf{Q}(\Omega)$ (At no sound)	$\mathbf{C}(\mathbf{\mu}\mathbf{f})$ $\mathbf{C}_{x} = \frac{\mathbf{P}}{\mathbf{Q}}\mathbf{C}_{0}$	Mean C(µf)
1.					
2.					
3.					
4.					

5. Table for value of P and Q for IVth capacitor

Sr.	$\mathbf{P}(\Omega)$	Perception of	$\mathbf{Q}(\Omega)$	C (µf)	Mean C(µf)	
No.		sound with Q	(At no sound)	$C_x = \frac{P}{Q}C_0$		
1.						
2.						
3.						
 4.						

Result:

- 1. Capacitance of Ist capacitor = $\dots \mu f$
- 2. Capacitance of IInd capacitor = $\dots \mu f$
- 3. Capacitance of IIIrd capacitor = $\dots \mu f$
- 4. Capacitance of IVth capacitor = $\dots \mu f$

Precaution:

- **1.** Connections should not be loose.
- **2.** The resistances should be high.
- **3.** If there is found no sound in head phone for a range of Q resistance then total range should be noted and mean of them should be taken for Q at no sound.