Acceleration due to gravity ' g ' by Bar Pendulum

OBJECT: To determine the value of acceleration due to gravity and radius of gyration using bar pendulum.
Apparatus used: Bar pendulum, stop watch and meter scale.

Formula:

A. The general formula of the time period for bar pendulum is given by following equation:

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{\frac{k^{2}}{l}+l}{g}}=2 \pi \sqrt{\frac{l_{2}+l_{1}}{g}} \\
& g=\frac{4 \pi^{2}\left(l_{1}+l_{2}\right)}{T^{2}}=\frac{4 \pi^{2} L}{T^{2}}
\end{aligned}
$$

(1)

Where l : distance between C.G. and suspension point, L: distance between suspension and oscillation points, $L=l_{1}+l_{2}=l+\frac{k^{2}}{l}$, g: acceleration due to gravity, T : time period.
B. The time period is minimum when $l= \pm k$, in this situation the equation (1) becomes as:
or

$$
\begin{gather*}
T_{\min }=2 \pi \sqrt{\frac{2 k}{g}} \\
g=\frac{8 \pi^{2} k}{T_{\min }^{2}} \tag{2}
\end{gather*}
$$

where, k : radius of gyration, $T_{\text {min }}$: minimum time period.
The value of ' g ' can be calculated using equations (1) and (2).
The values of $\mathrm{L}, \mathrm{T}, \mathrm{k}$ and Tmin are obtained using graph between T and L for bar pendulum which is shown in following figure.

Fig. 1

Fig. 2

From Figures (1) and (2),
(a) $L_{1}=A C+C D, L_{2}=E C+C B$ and $L=\left(L_{1}+L_{2}\right) / 2, T=$ time at C
(b) $\mathrm{k}=(\mathrm{PQ}+\mathrm{QR}) / 2$ and $\mathrm{T}_{\text {min }}=$ time at Q
C. The radius of gyration can be obtained with following formula

$$
\begin{equation*}
k=\sqrt{l_{1} l_{2}} \tag{3}
\end{equation*}
$$

Where $l_{1}=(A C+C E) / 2, l_{2}=(B C+C D) / 2$

Procedure:

(1) Place the knife-edges at the first hole of the bar.
(2) Suspend the pendulum through rigid support with the knife-edge.
(3) Oscillate the pendulum for small amplitude ($\theta=3 \sim 4^{0}$).
(4) Note the time taken for 20 oscillations and measure the distance of the hole from the C.G. of the bar.
(5) Repeat the observations (2)-(4) for knife-edges at first half side holes of bar.
(6) Repeat the process (1)-(5) for the second half side of the bar.
(7) Plot the graph between T and L .

Observations:

1. Least count of the stop watch = \qquad
2. Least count of the meter scale $=$ \qquad cm
3. Table for 1 and T

S. No.	l $(\mathrm{~cm})$	t (time taken for 20 oscillations)	$\mathrm{T}=\mathrm{t} / 20$
For first half side of the bar			
1	45		
2	40		
3	35		
4	30		
5	25		
6	20		
7	15		
8	10		
9	5		
For second half side of the bar			
10	-5		
11	-10		
12	-15		
13	-20		
14	-25		
15	-30		
16	-35		
17	-40		
18	-45		

Calculations: from graph, $\quad L=(A D+E B) / 2=\ldots ., \quad T=\ldots$ sec,

$$
k=P R / 2=\ldots \quad T_{\text {min }}=\ldots s e c
$$

$$
l_{1}=(A C+C E) / 2=\ldots, \quad l_{2}=(B C+C D) / 2
$$

1. $g_{1}=\frac{4 \pi^{2} L}{T^{2}}$

2. $g_{2}=\frac{8 \pi^{2} k}{T_{\text {min }}^{2}}$
3. $g=\frac{g_{1}+g_{2}}{2}$
4. $k=\sqrt{l_{1} l_{2}}$

Results: \quad The acceleration due to gravity (g) = \qquad mss ${ }^{2}$
Radius of gyration (k) =.........cm (from calculation)
$=\ldots \ldots . . \mathrm{cm}$ (from graph)

Precautions:

1. The motion of the pendulum should be in a vertical plane. While taking the time, start taking observations after two oscillations to avoid any irregularity of motion.
2. The amplitude of oscillation should be small.
