Acceleration due to gravity 'g' by Bar Pendulum

OBJECT: To determine the value of acceleration due to gravity and radius of gyration using bar pendulum.

Apparatus used: Bar pendulum, stop watch and meter scale.

Formula:

A. The general formula of the time period for bar pendulum is given by following equation:

$$T = 2\pi \sqrt{\frac{\frac{k^2}{l} + l}{g}} = 2\pi \sqrt{\frac{l_2 + l_1}{g}}$$
$$g = \frac{4\pi^2 (l_1 + l_2)}{T^2} = \frac{4\pi^2 L}{T^2}$$

Where *l*: distance between C.G. and suspension point, L: distance between suspension and oscillation points, $L = l_1 + l_2 = l + \frac{k^2}{l}$, g: acceleration due to gravity, T: time period.

B. The time period is minimum when $l=\pm k$, in this situation the equation (1) becomes as:

$$T_{min} = 2\pi \sqrt{\frac{2k}{g}}$$

$$g = \frac{8\pi^2 k}{T_{min}^2}$$
(2)

(1)

or

where, k: radius of gyration, T_{min} : minimum time period. The value of 'g' can be calculated using equations (1) and (2). The values of L, T, k and Tmin are obtained using graph between T and L for bar pendulum which is shown in following figure.

From Figures (1) and (2),

(a) L₁=AC+CD, L₂=EC+CB and L=(L₁+L₂)/2, T=time at C
(b) k =(PQ+QR)/2 and T_{min}= time at Q

C. The radius of gyration can be obtained with following formula

$$k = \sqrt{l_1 l_2}$$
Where $l_1 = (AC + CE)/2$, $l_2 = (BC + CD)/2$
(3)

Procedure:

- (1) Place the knife-edges at the first hole of the bar.
- (2) Suspend the pendulum through rigid support with the knife-edge.
- (3) Oscillate the pendulum for small amplitude (θ =3~4⁰).
- (4) Note the time taken for 20 oscillations and measure the distance of the hole from the C.G. of the bar.
- (5) Repeat the observations (2)-(4) for knife-edges at first half side holes of bar.
- (6) Repeat the process (1)-(5) for the second half side of the bar.
- (7) Plot the graph between T and L.

Observations:

- 1. Least count of the stop watch = sec
- 2. Least count of the meter scale =..... cm

3 Table for L and T

5. 10	ibie jor i unu I			
S.	1	t (time taken for	T = t/20	
No.	(cm)	20 oscillations)		
For fi	rst half side of	the bar		
1	45			
2	40			
3	35			
4	30			
5	25			
6	20			
7	15			
8	10			
9	5			
For se	cond half side	of the bar		
10	-5			
11	-10			
12	-15			
13	-20			
14	-25			
15	-30			
16	-35			
17	-40			
18	-45			
lations	s: from graph,	L=(AD+EB)/2=,	T=	sec,
		$k = PR/2 = \dots$	T_n	$nin=\dots Sec$
		$l_1 = (AC + CE)/2 =,$	$l_2 =$	=(BC+CD)/2
$4 \pi^2$	L	$8\pi^2 k$	$g_1 + g_2$	
$=$ $\frac{1}{T^2}$	$- 2. g_2$	$g = \frac{1}{\pi^2}$ 3. $g = \frac{1}{\pi^2}$	$=\frac{01}{2}$	4. $k = \sqrt{l_1 l_2}$
		1 _{min}	2	

1.
$$g_1 = \frac{4\pi^2 I}{T^2}$$

Results:

Cal

The acceleration due to gravity $(g) = \dots m/s^2$ Radius of gyration (k) =.....cm (from calculation) =.....cm (from graph)

Precautions:

- 1. The motion of the pendulum should be in a vertical plane. While taking the time, start taking observations after two oscillations to avoid any irregularity of motion.
- 2. The amplitude of oscillation should be small.